Melatonin and steroid hormones activate intermembrane Cu,Zn-superoxide dismutase by means of mitochondrial cytochrome P450.
نویسندگان
چکیده
Melatonin and steroid hormones are cytochrome P450 (CYP or P450; EC 1.14.14.1) substrates that have antioxidant properties and mitochondrial protective activities. The mitochondrial intermembrane space (IMS) Cu,Zn-superoxide dismutase (SOD1) is activated after oxidative modification of its critical thiol moieties by superoxide anion (O₂(•-)). This study was aimed at investigating the potential association between the hormonal protective antioxidant actions in mitochondria and the regulation of IMS SOD1 activity. Melatonin, testosterone, dihydrotestosterone, estradiol, and vitamin D induced a sustained activation over time of SOD1 in intact mitochondria, showing a bell-shaped enzyme activation dose response with a threshold at 50nM and a maximum effect at 1μM concentration. Enzyme activation was not affected by furafylline, but it was inhibited by omeprazole, ketoconazole, and tiron, thereby supporting the occurrence of a mitochondrial P450 activity and O₂(•-) requirements. Mitochondrial P450-dependent activation of IMS SOD1 prevented O₂(•-)-induced loss of aconitase activity in intact mitochondria respiring in State 3. Optimal protection of aconitase activity was observed at 0.1μM P450 substrate concentration, evidencing a likely oxidative effect on the mitochondrial matrix by higher substrate concentrations. Likewise, enzyme activation mediated by mitochondrial P450 activity delayed CaCl₂-induced loss of transmembrane potential and decreased cytochrome c release. Omeprazole and ketoconazole abrogated both protecting mitochondrial functions promoted by melatonin and steroid hormones.
منابع مشابه
Redox activation of mitochondrial intermembrane space Cu,Zn-superoxide dismutase.
The localization of Cu,Zn-superoxide dismutase in the mitochondrial intermembrane space suggests a functional relationship with superoxide anion (O2*-) released into this compartment. The present study was aimed at examining the functionality of Cu,Zn-superoxide dismutase and elucidating the molecular basis for its activation in the intermembrane space. Intact rat liver mitochondria neither sca...
متن کاملSubcellular distribution of superoxide dismutases in rat liver.
Rat liver was homogenized in isotonic buffer, fractionated by differential centrifugation, and then subfractionated by equilibrium sedimentation in Nycodenz gradients. Fractions were assayed for both Cu,Zn-SOD and Mn-SOD by exploiting the cyanide-sensitivity of the former activity and by the use of specific antibodies. As expected, the cytosol and lysosomal fractions contained Cu,Zn-SOD; while ...
متن کاملAn Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase
In eukaryotes, the Cu/Zn superoxide dismutase (SOD1) is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS) to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a co...
متن کاملMitochondrial respiratory chain and thioredoxin reductase regulate intermembrane Cu,Zn-superoxide dismutase activity: implications for mitochondrial energy metabolism and apoptosis.
IMS (intermembrane space) SOD1 (Cu/Zn-superoxide dismutase) is inactive in isolated intact rat liver mitochondria and is activated following oxidative modification of its critical thiol groups. The present study aimed to identify biochemical pathways implicated in the regulation of IMS SOD1 activity and to assess the impact of its functional state on key mitochondrial events. Exogenous H2O2 (5 ...
متن کاملIncreased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants.
The effect in vivo of high nutrient levels of copper (240 micromolar) on the activity of different metalloenzymes containing Cu, Mn, Fe, and Zn, distributed in chloroplasts, peroxisomes, and mitochondria, was studied in leaves of two varieties of Pisum sativum L. plants with different sensitivity to copper. The metalloenzymes studied were: cytochrome c oxidase, Mn-superoxide dismutase (Mn-SOD) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Free radical biology & medicine
دوره 50 11 شماره
صفحات -
تاریخ انتشار 2011